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H I G H L I G H T S  

• Vegetation greenness is negatively but insignificantly associated with dengue incidence. 
• This association is stronger in socioeconomically vulnerable areas. 
• Improved vegetation quality has the potential to reduce dengue risk. 
• Openly accessible, coarse resolution environmental data have limitations in environmental health studies.  
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A B S T R A C T   

Being a Re-Emerging Infectious Disease, dengue causes 390 million cases globally and is prevalent in many urban 
areas in South America. Understanding the fine-scale relationships between dengue incidence and environmental 
and socioeconomic factors can guide improved disease prevention strategies. This ecological study examines the 
association between dengue incidence and satellite-based vegetation greenness in 3826 census tracts nested in 
474 neighborhoods in Belo Horizonte, Brazil, during the 2010 dengue epidemic. To reduce potential bias in the 
estimated dengue-greenness association, we adjusted for socioeconomic vulnerability, population density, 
building height and density, land cover composition, elevation, weather patterns, and neighborhood random 
effects. We found that vegetation greenness was negatively associated with dengue incidence in a univariate 
model, and this association attenuated after controlling for additional covariates. The dengue-greenness asso
ciation was modified by socioeconomic vulnerability: while a positive association was observed in the least 
vulnerable census tracts, the association was negative in the most vulnerable areas. Using greenness as a proxy 
for vegetation quality, our results show the potential of vegetation management in reducing dengue incidence, 
particularly in socioeconomically vulnerable areas. We also discuss the role of water infrastructure, sanitation 
services, and tree cover in lowering dengue risk.   

* Corresponding author. 
E-mail addresses: consolacaocunha@uol.com.br (M.C.M. Cunha), yangju90@berkeley.edu (Y. Ju), mhfmorais@yahoo.com.br (M.H.F. Morais), idronova@ 

berkeley.edu (I. Dronova), serviopr@gmail.com (S.P. Ribeiro), fabio_rpb@yahoo.com.br (F.R.P. Bruhn), larissalopeslima@yahoo.com.br (L.L. Lima), denise. 
marques.sales@gmail.com (D.M. Sales), oschultes@gmail.com (O.L. Schultes), danrod@berkeley.edu (D.A. Rodriguez), caiaffa.waleska@gmail.com (W.T. Caiaffa). 

Contents lists available at ScienceDirect 

Landscape and Urban Planning 

journal homepage: www.elsevier.com/locate/landurbplan 

https://doi.org/10.1016/j.landurbplan.2021.104255 
Received 4 December 2020; Received in revised form 11 August 2021; Accepted 14 September 2021   

mailto:consolacaocunha@uol.com.br
mailto:yangju90@berkeley.edu
mailto:mhfmorais@yahoo.com.br
mailto:idronova@berkeley.edu
mailto:idronova@berkeley.edu
mailto:serviopr@gmail.com
mailto:fabio_rpb@yahoo.com.br
mailto:larissalopeslima@yahoo.com.br
mailto:denise.marques.sales@gmail.com
mailto:denise.marques.sales@gmail.com
mailto:oschultes@gmail.com
mailto:danrod@berkeley.edu
mailto:caiaffa.waleska@gmail.com
www.sciencedirect.com/science/journal/01692046
https://www.elsevier.com/locate/landurbplan
https://doi.org/10.1016/j.landurbplan.2021.104255
https://doi.org/10.1016/j.landurbplan.2021.104255
https://doi.org/10.1016/j.landurbplan.2021.104255
http://creativecommons.org/licenses/by/4.0/


Landscape and Urban Planning 216 (2021) 104255

2

1. Introduction 

Approximately 390 million dengue cases occur globally every year 
(Bhatt et al., 2013). In South America, there is a high prevalence of 
dengue in many urban areas. However, dengue once appeared to be 
under control, and recurring outbreaks make it a reemerging infectious 
disease. The elimination of Aedes aegypti, the main dengue vector, by 
mosquito eradication programs effectively controlled the dengue 
epidemic in the Americas in the 1950s and 1960s (Gubler, 2011). 
However, dengue returned to the Antilles in 1960 and reached South 
America at the end of that decade. Since then, dengue has become more 
intense and has been affecting mainly large urban centers in different 
regions (Gubler, 2011; San Martín et al., 2010; Wilcox & Colwell, 2005). 
Unplanned urbanization, along with ineffective mosquito control, 
changes in lifestyles, globalization, and international travel, have 
contributed to dengue’s reemergence in both endemic and non-endemic 
areas (Buonsenso et al., 2014; Gubler, 2011). Aedes aegypti is a domes
ticated mosquito that develops in man-made containers in the urban 
environment, and the mosquito’s abundance raises with urbanization 
(Higa, 2011; Powell & Tabachnick, 2013). Urban planning and man
agement have the potential to reduce the risk of vector-borne diseases, 
through improving the built environment, green spaces, housing con
ditions, and sanitation (Degroote, Zinszer, & Ridde, 2018; Lee, 1994; 
Lindsay, Wilson, Golding, Scott, & Takken, 2017; Ogden, 2016). 
Studying the associations between dengue incidence and the afore
mentioned factors at the urban neighborhood scale is critical to identify 
markers of elevated risk and opportunities for intervention (Spencer, 
Finucane, Fox, Saksena, & Sultana, 2020), refine disease prevention 
guidance, and increase resident’s participation in managing natural and 
human habitats. 

Controlling emerging and reemerging infectious diseases, such as 
vector-borne diseases, including dengue, requires interdisciplinary 
knowledge and an expanded concept of causality in epidemiology (Ellis 
& Wilcox, 2009). Under these principles, researchers have developed 
frameworks including biocomplexity (Colwell, 1998; Wilcox & Colwell, 
2005) and the Eco-Bio-Social strategy (de Macêdo et al., 2021). Central 
to these frameworks is that environmental and socioeconomic condi
tions interact to create elevated risks of diseases such as dengue and the 
recent COVID-19. Dengue incidence rises with temperature, precipita
tion, and relative humidity (Xu et al., 2017). It is linked to vector 
biology: rising temperatures expand the spatial distribution of Aedes 
aegypti both globally (Bustamante et al., 2019) and locally (Bona, 
Twerdochlib, & Navarro-Silva, 2011; Degallier et al., 2003). Aedes 
aegypti is a highly domesticated mosquito that lays eggs in artificial 
containers such as old tires, water storage, and trash (Gubler, 1998). 
Therefore, socioeconomic conditions including lower household acces
sibility to piped water (Pedrosa et al., 2020; de Teixeira, 2008), 
increased domestic water storage (Cordeiro et al., 2011), irregular or no 
trash collection (Cordeiro et al., 2011; Honorato et al., 2014; Vargas 
et al., 2015), and lack of basic sanitation (Cordeiro et al., 2011; de 
Almeida & de Medronho, 2009), have been linked to a higher incidence 
of dengue. In addition, lack of effective vector control (Gubler, 2011), 
viral serotype, local population immunity (Marti et al., 2020; Salje et al., 
2012), and human mobility (Cordeiro et al., 2011; Zhu, Liu, Tan, & Shi, 
2016) have been associated with dengue incidence. 

Urban areas are complex mosaics of heterogeneous environmental 
and socioeconomic conditions, making these areas hotspots of dengue. 
Fast and unplanned urbanization may be accompanied with sub- 
standard sanitation services and underdeveloped water infrastructures, 
leading to favorable conditions for Aedes aegypti infestation. The high 
population density in cities also increases exposure to mosquitos and the 
likelihood of dengue transmission. Together, these conditions make 
dengue primarily an urban disease that reemerges in large tropical 
urban centers at a faster frequency (Gubler, 2011). With the increasing 
transmission of vector-borne diseases in cities, public policy has turned 
to multisectoral approaches, including environmental management, 

expansion of sanitation services, housing improvement, and educational 
campaigns (Donalisio et al., 2017) to reduce disease risks. In this 
context, modifying the built and natural environment through vegeta
tion management and land use planning have emerged in the urban 
planning sector as promising approaches to reduce the spread of vector- 
borne diseases such as dengue (Degroote et al., 2018; Lee, 1994; Lindsay 
et al., 2017; Ogden, 2016). 

Vegetation management can be an effective strategy in highly ur
banized areas characterized by high population density and dominance 
of built-up areas, where other interventions including land use control 
and housing improvement may be more challenging and costly. Obser
vational studies have examined dengue incidence and vegetation within 
and between cities. The studies found a mixture of positive, negative, 
and non-linear associations (Araujo et al., 2015; Cao et al., 2017; Huang 
et al., 2018; Martínez-Bello, López-Quílez, & Torres Prieto, 2017; Penso- 
Campos, Fraga, Caldas, Sommer, & Périco, 2018; Qi et al., 2015; Sari, 
Adelwin, & Rinawan, 2020). These inconsistent findings can be attrib
uted to different spatial scales of analysis, measures of vegetation, and 
analytical approaches. Experimental studies have found that vegetation 
management, including planting certain species (Jiannino & Walton, 
2004) and optimizing planting configuration (Thullen, Sartoris, & 
Walton, 2002), can reduce mosquito populations. However, these 
studies (Jiannino & Walton, 2004; Thullen et al., 2002) were conducted 
in wetlands and did not use dengue incidence as an outcome. Therefore, 
the effectiveness of the proposed management strategies in reducing 
dengue risk in cities remains uncertain. Different vegetation types, 
including farmland, forests, and grassland, co-exist in cities. These 
vegetation types could increase or decrease the Aedes aegypti population 
due to changes in competing species (Medeiros-Sousa, Fernandes, 
Ceretti-Junior, Wilke, & Marrelli, 2017) and shading (Barrera, Amador, 
& Clark, 2006), consequently modifying dengue transmission patterns. 
Therefore, while local governments can employ vegetation management 
to reduce the risk of dengue transmission, effective ways to achieve this 
goal remain uncertain. 

In this study, we examine Belo Horizonte, Brazil, which has experi
enced several dengue outbreaks since 1996. The city represents a com
plex spatial distribution of dengue cases and environmental and 
socioeconomic conditions (Fig. 1). Research has linked seasonal peaks in 
temperature and precipitation (Almeida, Assunção, Proietti, & Caiaffa, 
2008; Horizonte, 2016; Campos et al., 2019), socioeconomic, de
mographic, and urban infrastructure characteristics (Bavia et al., 2020; 
Campos et al., 2019; de Mattos Almeida, Caiaffa, Assunção, & Proietti, 
2007; Pessanha, Caiaffa, Kroon, & Proietti, 2010) with dengue incidence 
in Belo Horizonte. In 2010, twelve years after the previous epidemic, the 
city recorded an epidemic with the concurrent circulation of three viral 
serotypes (DENV-1, DENV-2, and DENV-3) and an annual incidence of 
2053 cases per 100,000 inhabitants. Dengue generally exhibits a sea
sonal and cyclical behavior over the years due to climatic conditions, 
circulating viruses, and population susceptibility (Ximenes et al., 2016). 
Consequently, Belo Horizonte has experienced subsequent epidemics in 
2013, 2016, and 2019, with progressively increasing incidence, disease 
severity, and fatality rates (Horizonte, 2020; Campos et al., 2019). These 
recurring outbreaks highlight the urgency of interventions, including 
those in vegetation management, to curb dengue risk. 

Accordingly, to understand how vegetation management could 
reduce dengue risk, we investigated the association between vegetation 
greenness and dengue incidence in 3826 census tracts in Belo Horizonte, 
Brazil, during the 2010 dengue epidemic. To our knowledge, only one 
prior study has analyzed the relationship between dengue and vegeta
tion at this scale (Martínez-Bello et al., 2017). This fine spatial scale is 
critical for communicating research findings with local decision-makers. 
We measured vegetation greenness using the Normalized Difference 
Vegetation Index (NDVI), a popular satellite-based indicator for vege
tation coverage, health, and photosynthetic activities. NDVI has been 
widely used in environmental health studies (Rojas-Rueda, Nieu
wenhuijsen, Gascon, Perez-Leon, & Mudu, 2019). 
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We hypothesize that vegetation greenness has a negative association 
with dengue incidence, as higher greenness after controlling for vege
tation coverage indicates healthier vegetation with the presence of 
predators and competing species of the Aedes aegypti, leading to a pro
tective effect against dengue. We also explore whether the relationship 
between dengue incidence and greenness is modified by socioeconomic 
vulnerability. We hypothesize that more vulnerable areas would be at 
greater risk due to lower quality green spaces that may be a better 
habitat for the vector. To reduce potential omitted variable bias in the 
estimated relationships between dengue incidence and greenness, we 
controlled for a set of covariates, including socioeconomic vulnerability, 
population density, building height, percentage of census tract area 
covered by building footprints, land cover composition, elevation, and 
weather patterns. The findings are intended to inform urban planners, 
engineers, and public health professionals regarding vegetation man
agement as a tool to mitigate the transmission of dengue and other 
arboviruses. 

2. Data and methods 

2.1. Study area 

Our study area initially covers 3828 census tracts (setores cen
sitários) nested in 474 neighborhoods (bairros) in Belo Horizonte, Brazil 
(Fig. 1). We dropped two census tracts due to missing land cover data, 
and we used the remaining 3826 census tracts throughout the study. As 
defined by the Brazilian Institute of Geography and Statistics (IBGE), a 
census tract is a continuous area located in a single urban or rural 
setting, with varying sizes and numbers of households (Bueno, 2017; 

IBGE, 2010). In Belo Horizonte, a census tract contains an average 
population of 5886 (Interquartile Range, IQR: 3800 – 7886) and an 
average area of 7.94 ha (IQR: 2.61 – 7.87). Neighborhood, officially 
defined by the city, is a cluster of adjacent census tracts by which the city 
communicates with its residents and provides services (Bairros de BH, 
2009). We obtained neighborhood boundary data from BHGeo 
(https://bhgeo.pbh.gov.br/home). A neighborhood contains between 1 
and 58 census tracts (Table 1). 

2.2. Outcome: dengue incidence 

The outcome variable is dengue incidence (cases per 100,000 pop
ulation) in 2010. Dengue cases are reported to the Notifiable Diseases 
Information System, and we obtained the data for Belo Horizonte 
through the City Health Department. As part of the BH-VIVA database 
project (Friche, Dias, Reis, Dias, & Caiaffa et al., 2015), the Urban Health 
Observatory of Belo Horizonte performed data cleaning and consistency 
check, and it georeferenced each case to a census tract using the co
ordinates of the patient’s residence. Population counts for the census 
tracts in 2010 were obtained from WorldPop (Sorichetta et al., 2015). 

2.3. Exposure: vegetation greenness 

Our exposure variable is vegetation greenness derived from NDVI. 
NDVI represents the combined effect of vegetation quantity, including 
coverage and biomass, and quality, capturing photosynthetic activities 
and vegetation health (Tucker, 1979). NDVI takes values between − 1 
and 1, with higher values indicating the larger quantity, better quality of 
vegetation, or both. 

Fig. 1. Study area. (a) Census tracts nested in neighborhoods, and spatial distribution of (b) Dengue incidence rate (cases/100,000 population) during the 2010 
epidemic; (c) greenness, with higher values indicating more and better quality vegetation; (d) vulnerability, measured by the Health Vulnerability Index, with higher 
values indicating more vulnerability. Values in (b) – (d) are classified by quantile classification. 
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We calculated vegetation greenness as the census-tract average of 
annual mean of monthly maximum NDVI values. We first computed 
NDVI every 16 days in 2010 from the red and near-infrared electro
magnetic bands (630–690 nm and 760–900 nm, respectively) of the 
Landsat-5 TM satellite surface reflectance images. Landsat-5 TM images 
have 30 m spatial resolution and 16-day temporal frequency. We 
masked out image areas covered by cloud, shadow and water, which 
would otherwise cause bias in NDVI and greenness estimates. Then for 
each month, we generated a monthly maximum NDVI image reflecting 
the greenest condition of each image pixel and averaged the monthly 
images to produce an NDVI image for 2010. We calculated the census- 
tract average of this 2010 NDVI image, which we subsequently used 
as vegetation greenness in our analyses. While, by definition, NDVI 
ranges between − 1 and 1, for better interpretation of the model results, 
we rescaled greenness to a range between -10 and 10 (Fig. 1c). We 
accessed Landsat-5 data and performed these calculations in Google 
Earth Engine, a cloud-based platform for remote sensing image pro
cessing (Gorelick, 2013). 

Because NDVI measures vegetation quantity and quality simulta
neously, a census tract with healthy green vegetation that occupies a 
small proportion of its area might have a similar greenness value to a 
fully vegetated census tract with stressed or senescent and therefore less 
green vegetation. To better estimate the effect of vegetation quality on 
dengue incidence, we introduced additional covariates controlling for 
vegetation quantity within a census tract. These covariates include the 
percentage of census tract covered by forest, non-forest natural land, 
farmland, and building footprints. These covariates, along with others, 
are introduced below. 

2.4. Other covariates 

To reduce potential bias in the estimated association between dengue 
incidence and greenness, we controlled for a comprehensive set of 
covariates including socioeconomic vulnerability, population density, 
building height, the percentage of census tract area covered by building 
footprints, land cover composition, elevation, weather patterns, and 
neighborhood random effects. We identified these covariates initially 
using a directed acyclic graph (DAG) (Fig. S2), and we narrowed them 
down to a final set by examining multicollinearity with variance infla
tion factor (VIF). We collected these covariates from the year 2010 when 
possible to match the timeframe of the outcome and exposure variables. 
We used the Health Vulnerability Index (HVI) to measure socioeconomic 
vulnerability. This composite index, used by the City Health Department 
(Secretariat, 2018), is based on the 2010 census and encompasses 

infrastructure indicators and the socioeconomic status of residents 
(Fig. 1d). HVI considers infrastructure conditions, including water 
supply, sewage connection, and garbage collection, and it measures 
socioeconomic status by literacy rate, poverty, income, and percentage 
of the population in different racial groups. HVI is on a scale from 0 to 
10, with higher values indicating more vulnerable areas. HVI influences 
both greenness and dengue incidence: vulnerable areas are often less 
resourceful to build and manage green space (Casey, James, Cushing, 
Jesdale, & Morello-Frosch, 2017); These areas also have undesirable 
water and sanitation infrastructures, which are suitable for the repro
duction of Aedes aegypti. 

We included population density, building height, the percentage of 
census tract covered by building footprints (i.e. building density), and 
land cover composition to further characterize the urban environment. 
These factors could be modified by urban planning and affect vegetation 
greenness in several ways. Areas with dense populations and buildings 
may have less open space for vegetation, leading to lower greenness. 
Land cover composition, including forest, non-forest natural land, 
farming, urban, water, and others, helps to separate the effect of vege
tation quality from quantity on greenness magnitude. These urban 
environment characteristics also influence dengue incidence. Large 
building density and the presence of high-rise buildings are indicative of 
better housing conditions and less on-site water storage in the study 
area, which reduce breeding sites for Aedes aegypti (Seidahmed, Lu, 
Chong, Ng, & Eltahir, 2018; Troyo, Fuller, Calderón-Arguedas, Solano, 
& Beier, 2009). Land cover composition predetermines the suitability of 
Aedes aegypti habitats and the dynamics of the human population. 

We calculated population density by dividing population counts 
from the 2010 WorldPop dataset (Sorichetta et al., 2015) by census tract 
area. We obtained height and footprint of individual buildings from 
BHGeo (https://bhgeo.pbh.gov.br/home). We retrieved 2010 land 
cover maps from the MapBiomass Brasil dataset (https://mapbiomas. 
org/en), a dataset that maps land cover annually with satellite remote 
sensing images at 30 m spatial resolution. 

We also included land elevation and weather patterns to characterize 
the natural environment. These factors act as the background for vege
tation development and influence Aedes aegypti population and dengue 
incidence. We approximated census-tract average elevation using the 
ALOS World 3D global digital surface model at 30 m resolution collected 
between 2006 and 2011 (Tadono et al., 2014). Although a digital surface 
model measures land elevation combined with the heights of above
ground objects (e.g., trees and buildings), this dataset was still valuable 
for this study as a proxy for land surface elevation, given the lack of 
spatial information on individual aboveground objects such as trees. For 

Table 1 
Summary statistics of outcome variable, exposure variable, and covariates.   

Max. Min. Mean Median 25th 
percentile 

75th 
percentile 

Std. Std., between 
neighborhood 

Std., within the 
neighborhood 

Incidence rate (cases/100,000 
population) 

6756.48 0.00 229.18 138.11 46.03 306.00  307.52  447.49  186.09 

Greenness (0–10) 6.69 0.93 2.52 2.39 2.07 2.79  0.71  0.72  0.50 
Vulnerability (HVI, 0–10) 6.96 0.47 2.41 2.35 1.70 2.93  0.92  1.06  0.38 
Population density (people/ 

hectare) 
8476.80 0.78 1306.15 1110.57 818.82 1578.70  808.10  701.56  571.25 

Average building height (m) 96.25 2.43 7.11 5.24 4.74 6.65  5.49  3.15  3.27 
% building footprint 80.92 0.19 40.59 42.72 34.53 48.13  12.11  12.03  8.70 
% forest 68.60 0.00 0.60 0.00 0.00 0.00  4.29  3.93  3.61 
% non-forest natural land 31.65 0.00 0.03 0.00 0.00 0.00  0.75  0.53  0.65 
% farmland 71.09 0.00 1.06 0.00 0.00 0.00  5.75  6.76  4.30 
Average elevation (m) 1235.49 697.23 876.52 867.51 817.75 924.97  74.95  82.63  19.01 
Relative humidity (%) 73.59 70.14 71.35 71.54 71.11 71.90  0.76  0.73  0.16 
Total precipitation (mm/year) 100.36 83.47 90.93 94.33 83.47 94.33  5.02  5.12  0.77 
Temperature (◦C) 21.22 19.44 20.43 20.55 20.41 20.55  0.49  0.52  0.10 
Census tract area (hectare) 1288.10 0.08 7.95 4.98 2.61 7.87  27.82  35.15  19.63 
Total population (people) 24,298 32 5889 5869 3801 7887  2999.81  2457.93  2611.48 

Number of census tracts = 3826, 
Number neighborhoods = 474, each containing between 1 and 58 census tracts 
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climate variables, we included census-tract averages of daily mean 
temperature, daily mean relative humidity, and annual total precipita
tion in 2010. We obtained annual total precipitation from the ERA5 
dataset, which has 30 km spatial resolution and hourly temporal reso
lution (Copernicus Climate Change Service (C3S), 2017). We first 
generated annual total precipitation for each ERA5 grid cell by summing 
all hourly values in 2010. We then calculated census-tract precipitation 
as the area-weighted mean of the values from the ERA5 grid cells 
intersecting a census tract. We used the same procedure to calculate 
census-tract averages of daily mean temperature and daily mean relative 
humidity from the ERA5Land dataset (Copernicus Climate Change Ser
vice (C3S), 2019), which had a 9 km spatial resolution. It is worth noting 
that both ERA5 and ERA5Land are at coarse scales when compared with 
the census tracts. 

After examining multicollinearity using VIF, we excluded several 
covariates of land cover composition, including % urban, % water, and 
% others from the model. Our final covariates and their summary sta
tistics are in Table 1. The final covariates have a Spearman’s correlation 
between − 0.64 and 0.37 with the exposure variable, greenness (Fig. S1). 
Furthermore, the covariates show low levels of multicollinearity, as 
their VIFs were all below 5 (Table 2), which is a commonly used 
empirical threshold for detecting multicollinearity (O’brien, 2007). In 
addition, the final covariates are confounders to the dengue-greenness 
relationship, which reduce bias in our estimation even when high 
multicollinearity between the exposure and these covariates exists. 
Multicollinearity does lead to wider confidence intervals, but con
founding represents a greater concern in studies like ours (Schisterman, 
Perkins, Mumford, Ahrens, & Mitchell, 2017). 

2.5. Regression model 

We constructed four negative binomial mixed-effects models to es
timate the association between dengue incidence and greenness. The 
mixed-effects model contains fixed effects that are the same across all 
census tracts and random effects that vary by neighborhood. The mixed- 
effects model makes use of our nested data structure (i.e., census tracts 
in neighborhoods, Fig. 1a), reduces omitted variable bias, and allows 
regression coefficients to vary by neighborhoods. 

The first model included vegetation greenness with no covariates 
other than a neighborhood random intercept, β0j (equation (1)). 
Random intercept allows neighborhoods to have different baseline-level 
dengue incidence caused by unmeasured neighborhood characteristics 
such as vegetation species, management practices, and biophysical and 
built environments. 

In the remaining models, we included additional covariates for so
cioeconomic vulnerability, population density, building height, per
centage of census tract area covered by building footprints, land cover 
composition (% forest, % non-forest natural land, % farmland), eleva
tion, and weather patterns (equation (2)). We further added a neigh
borhood random slope, β1j, for vegetation greenness to allow its 

coefficient vary by neighborhood (equation (3)). In this model, we 
allowed the random intercept, β0j, and random slope, β1j, to be corre
lated. Finally, we included an interaction term between vegetation 
greenness and socioeconomic vulnerability to test whether the associa
tion between dengue incidence and greenness was modified by socio
economic vulnerability (equation (4)). 

log(IRij) = β0 + β1greennessij + β0j + εij (1)   

log(IRij)=β0+β1greennessij+β2vulnerabilityij+β3PDij+β4buildingheightij

+β5buildingfootprintij+landcoverijδ+β6elevationij+weatherijγ+β0j+εij

(2)   

log
(
IRij

)
=β0+β1greennessij+β2vulnerabilityij+β3PDij+β4buildingheightij

+β5buildingfootprintij+landcoverijδ+β6elevationij+weatherijγ+β0j

+β1jgreennessij+εij

(3)   

log(IRij)=β0+β1greennessij+β2vulnerabilityij+αgreennessij×vulnerabilityij

+β3PDij+β4buildingheightij+β5buildingfootprintij+landcoverijδ
+β6elevationij+weatherijγ+β0j+εij

(4)  

where: IRij is the incidence rate of dengue of census tract i in neigh
borhood j; greennessij is census-tract average of annual mean of monthly 
maximum NDVI; vulnerabilityij is Health Vulnerability Index measuring 
socioeconomic vulnerability; PDij is population density; buildingheightij is 
average building height; buildingfootprintij is percentage of census tract 
area covered by buildings; landcoverij is a vector for land cover compo
sition including the percentage of census area that is either forest, non- 
forest natural land, or farming; elevationij is average land elevation in a 
census tract; weatherij is a vector of census-tract average of daily mean 
temperature, daily mean relative humidity, and annual total precipita
tion; β0j is the neighborhood random intercept; β1j is the neighborhood 
random slope for greennessij; εij is a random error. 

We used incidence rate ratios (IRRs) to interpret the model results. 
IRR is a factor by which the outcome, dengue cases per 100,000 popu
lation, changes with a one-unit change in a covariate, when holding all 
other covariates constant. Therefore, IRRs greater than 1 indicates a 
positive association, whereas IRRs less than 1 indicate a negative 
association. 

In addition, to account for some of the spatial autocorrelations be
tween the census tracts and heteroscedasticity of model residuals, we 
estimated neighborhood-cluster-robust standard errors for the model 
coefficients. The neighborhood-cluster-robust standard error assumes 
that census tracts within the same neighborhood (cluster) are correlated, 
but those between different neighborhoods are independent. This 
assumption is likely to result in larger standard errors, wider confidence 
intervals, and more statistically insignificant (conservative) inference 
when compared with assuming the census tracts are independent of each 
other. In this way, we partially controlled for spatial autocorrelation in 
our dataset. 

2.6. Sensitivity tests 

In addition to the main models (Eqs. (2)–(4)) using a mixed-effects 
negative binomial model with cluster-robust standard errors, we 
tested several alternatives to justify our choice. We started with a pooled 
model without neighborhood random intercepts, testing whether 

Table 2 
Variable inflation factor (VIF) for the exposure variable and 
covariates.   

VIF 

Greenness (-10–10)  2.88 
Vulnerability (HVI, 0–10)  1.64 
Population density (people/hectare)  1.65 
Average building height (m)  1.61 
% building footprint  2.41 
% forest  1.51 
% non-forest natural land  1.07 
% farmland  1.71 
Average elevation (m)  3.33 
Relative humidity (%)  2.60 
Total precipitation (mm/year)  2.48 
Temperature (◦C)  3.74  
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omitting such effects could bias the dengue-greenness relationship. We 
then estimated the models assuming the census tracts were independent 
of each other and model residuals were independently and identically 
distributed to illustrate how cluster-robust standard errors correct the 
statistical inference. 

Finally, instead of a neighborhood random intercept model (equa
tion (2)), we estimated a neighborhood fixed effects model. Both 
random intercept and fixed effects models are ways to control unob
served, group-level (neighborhood in this study) effects in hierarchical 
datasets by estimating a set of intercepts for the groups. The two models 
require different assumptions. A random intercept model assumes that 
these intercepts are uncorrelated with the covariates, whereas the fixed 
effects model relaxes such an assumption (Greene, 2018). While more 
versatile, we did not prioritize the fixed effects model as we would have 
a large number of fixed effects (n = 474, one per neighborhood), which 
leads to large confidence intervals for the coefficient estimates. 

2.7. Limitations of the model 

The first limitation of the study is that we used secondary data where 
cases were reported by health professionals, health services, and the 
public. Therefore, this case reporting was subject to misclassification 
bias. Dengue cases were reported to the Notifiable Diseases Information 
System, where cases could be misdiagnosed (de Mattos Almeida et al., 
2007; Harris et al., 2000). In Belo Horizonte between 1996 and 2017, 

the surveillance system could confirm 46% of reported cases through 
laboratory diagnosis, whereas the remaining cases were diagnosed 
based on epidemiological criteria (Campos et al., 2019). Recent studies 
have shown improved accuracy in dengue case reporting in the Notifi
able Diseases Information System (Barbosa, Barrado, Zara, & Siqueira, 
2015; Goto et al., 2016) 

Secondly, although we controlled for a comprehensive set of cova
riates, additional factors may further reduce omitted variable bias. 
These factors include vegetation species, land use, and irrigation prac
tices, which affect both dengue incidence and greenness. However, 
quality datasets for these covariates were lacking when we conducted 
this study. 

Thirdly, the environmental datasets in this study are at coarse spatial 
resolutions, which likely contain measurement errors and fail to capture 
fine-scale variations. For example, the 30 m resolution MapBiomass 
Brasil land cover product can only identify the main land cover, and 
classification accuracy is reduced in heterogeneous landscapes like 
wetlands due to the ’mixed pixel’ problem (Kaur et al., 2019). This 
imprecise estimation of vegetation quantity prevents us from fully 
isolating the effect of vegetation quantity on greenness. The coarse 
spatial resolution also means a lack of within-neighborhood variation of 
the environmental variables to produce precise regression estimates. We 
consider that this issue exists in NDVI (30 m resolution) and land cover 
(30 m resolution), and it magnifies in weather pattern variables (9–31 
km resolutions). Therefore, collecting fine-resolution environmental 

Table 3 
Results of models examining the association between dengue incidence and greenness, controlling for socioeconomic and environmental covariates.   

(1)IRR (2)IRR (3)IRR (4)IRR 

Fix effects     
Greenness (-10–10) 0.834*** 

[0.789,0.882] 
0.949 
[0.878,1.025] 

0.915** 

[0.843,0.994] 
1.316*** 

[1.108,1.564] 
Vulnerability (HVI, 0–10)  1.254*** 

[1.162,1.354] 
1.269*** 

[1.176,1.368] 
1.824*** 

[1.509,2.205] 
Greenness × Vulnerability    0.879*** 

[0.825,0.938] 
Population density (people/hectare)  0.9998*** 

[0.9997,0.9998] 
0.9998*** 

[0.9997,0.9998] 
0.9997*** 

[0.9997,0.9998] 
Average building height (m)  0.982 

[0.960,1.005] 
0.980 
[0.956,1.005] 

0.985 
[0.963,1.007] 

% building footprint  1.017*** 

[1.013,1.022] 
1.017*** 

[1.013,1.022] 
1.017*** 

[1.013,1.022] 
% forest  1.007* 

[1.000,1.015] 
1.007* 
[0.999,1.016] 

1.005 
[0.998,1.012] 

% non-forest natural land  1.017 
[0.980,1.055] 

1.020 
[0.983,1.058] 

1.010 
[0.976,1.045] 

% farmland  0.987*** 

[0.980,0.995] 
0.988*** 

[0.981,0.995] 
0.992** 

[0.984,0.999] 
Average elevation (m)  0.993*** 

[0.992,0.995] 
0.994*** 

[0.992,0.995] 
0.993*** 

[0.992,0.994] 
Relative humidity (%)  0.707*** 

[0.605,0.827] 
0.699*** 

[0.598,0.817] 
0.700*** 

[0.600,0.816] 
Total precipitation (mm/year)  1.012 

[0.997,1.027] 
1.010 
[0.995,1.025] 

1.016** 

[1.000,1.032] 
Temperature (◦C)  0.775* 

[0.593,1.013] 
0.784* 
[0.601,1.023] 

0.775* 
[0.596,1.008]  

Random effects +

var(Greenness)   0.050*** 

[0.022,0.115]  
var(Intercept) 1.101*** 

[0.952,1.272] 
0.560*** 

[0.461,0.680] 
0.689*** 

[0.420,1.129] 
0.532*** 

[0.440,0.644] 
Controls No Yes Yes Yes 
Random intercept Yes Yes Yes Yes 
Random slope No No Yes No 
Confidence interval Neighborhood-cluster-robust Neighborhood- cluster-robust Neighborhood- cluster-robust Neighborhood- cluster-robust 
Number of observations 3826 3826 3826 3826 

Note: A coefficient, or incidence rate ratio (IRR), is the factor by which the dengue incidence (dengue cases per 100,000 residents) changes for a one-unit increase in the 
corresponding covariate when holding other covariates constant. Vulnerability is measured by the Health Vulnerability Index (HVI) that encompasses infrastructure 
indicators related to basic sanitation and socioeconomic status of residents, recorded by the 2010 census. *, **, and *** indicate significant at p-value < 0.10, p-value <
0.05, and p-value < 0.01. 95% confidence intervals are in square brackets. 
+Random effects are the variances of log-transformed coefficients (IRRs). 
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datasets is highly beneficial for environmental health studies to capture 
detailed variations in heterogeneous urban landscapes, reducing mea
surement error, and producing statistically sound results. 

3. Results 

3.1. Insignificant protective effect of greenness on dengue 

We found a negative and statistically significant association (IRR <
1) between greenness and dengue incidence, when controlling only for 
neighborhood random effects (model 1, Table 3). In this model, a one- 
unit increase in greenness (40% of the mean of 2.52) was associated 
with a 16.6% ((0.834 − 1)× 100% = − 16.6%, similar calculations 
hereafter) reduction in dengue incidence rate. 

The negative association between greenness and dengue incidence 
attenuated and was not statistically significant after controlling for a set 
of covariates including socioeconomic vulnerability, population density, 
building height, percentage of census tract area covered by building 
footprints, elevation, land cover composition, and weather patterns 
(model 2, Table 3). In the latter model, a one-unit increase in greenness 
was associated with a 5.1% reduction in dengue incidence. 

3.2. Socioeconomic vulnerability modifies the dengue-greenness 
association 

We observed a statistically significant random slope for greenness, 
indicating the association between greenness on dengue incidence var
ied by neighborhood (model 3, Table 3). In addition, this model esti
mated a stronger and statistically significant protective effect of 
greenness, where a one-unit increase in greenness reduced dengue 
incidence by 8.5%. 

We observed a statistically significant negative interaction between 
greenness and socioeconomic vulnerability (model 4, Table 3), sug
gesting that the association between dengue incidence and greenness 
was modified by socioeconomic vulnerability. The association between 
dengue incidence and greenness shifted from positive (IRR > 1) to 
negative (IRR < 1) as the census tracts in our sample became more 
vulnerable (Fig. 2). This association was stronger and statistically sig
nificant in the census tracts with low (roughly below the 10th percentile) 
or high (roughly above the 70th percentile) HVI. 

3.3. The associations between dengue incidence and the covariates 

We found that socioeconomic vulnerability, % building footprint and 
% forest had positive and statistically significant associations with 
dengue incidence across the models (models 2–4, Table 3). In addition, 
% non-forest natural land and total precipitation had positive but 

statistically insignificant associations with dengue incidence. 
We found negative and statistically significant associations between 

dengue incidence and population density, % farmland, average eleva
tion, relative humidity, and temperature (models 2–4, Table 3). We 
found negative but statistically insignificant association between dengue 
incidence and average building height. 

3.4. Sensitivity tests 

The alternative model specifications (Table S1) generally confirmed 
the dengue-greenness relationship in our main models (Table 3). How
ever, the sizes of the coefficients and their confidence intervals varied 
due to different model assumptions. Compared with the main models, 
the pooled model ignoring neighborhood effects (model 2–1, Table S1) 
produced a stronger negative and statistically significant association 
(IRR = 0.812) between dengue incidence and greenness. However, this 
association was likely biased due to omitted variables. Specifying 
cluster-robust standard errors led to wider confidence intervals and 
more conservative statistical inference, when compared with using in
dependent standard errors (models 2–2, 3–1, 4–1, Table S1). Finally, the 
neighborhood fixed effects model yielded a slightly weaker association 
between dengue and greenness (model 2–3, Table S1). 

4. Discussion 

4.1. Protective effect of vegetation greenness on dengue incidence 

Our results suggested a negative but statistically not significant as
sociation between dengue incidence and vegetation greenness averaged 
across the census tracts in Belo Horizonte, after controlling for socio
economic vulnerability, population density, building height, percentage 
of census tract area covered by building footprints, elevation, land cover 
composition, weather patterns, and neighborhood random intercept 
(model 2, Table 3). Furthermore, this association varied by neighbor
hood (model 3, Table 3). For example, it changed based on the socio
economic vulnerability of the census tracts: the association was negative 
and statistically significant for the most vulnerable census tracts, but it 
was positive and statistically significant for the least vulnerable ones 
(Fig. 2). 

Greenness, as measured by NDVI, alone represents the combined 
effect of vegetation quantity and quality. We attempted to separate the 
effect of vegetation quantity from quality by introducing covariates for 
vegetation coverage, including land cover composition and the per
centages of census tract area covered by buildings. Despite some data 
limitations discussed in Section 2.7, higher greenness likely indicated 
better vegetation quality in our analyses. 

Our results align in part with previous findings indicating a negative 

Fig. 2. Associations (IRR) between dengue incidence and vegetation greenness, conditioned on socioeconomic vulnerability. IRR is the factor by which dengue 
incidence (annual dengue cases per 100,000 residents) changes for a one-unit increase in a covariate, when holding other covariates constant. Socioeconomic 
vulnerability is measured by the Health Vulnerability Index. 95% confidence intervals of the IRRs are shaded. 
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association between dengue incidence and vegetation regarding quan
tity (Araujo et al., 2015; Cao et al., 2017) and the combined effect of 
quantity and quality (Meza-Ballesta & Gónima, 2014). However, other 
studies have also reported positive (Martínez-Bello et al., 2017) or non- 
linear associations (Qi et al., 2015). We suspect that the inconsistencies 
reflect differences in spatial scales of analysis, measurements of vege
tation, and analytical approaches. For instance, some studies only 
analyzed simple correlations between dengue incidence and vegetation 
without controlling for a comprehensive set of covariates as in our study 
(Cao et al., 2017; Martínez-Bello et al., 2017). It is also worth noting that 
the overall negative association between dengue incidence and green
ness identified in our study was small and not statistically significant. 
One explanation could be that the main factor leading to high Aedes 
aegypti population (the main regional dengue vector) and consequently 
high dengue incidence include household water storage, sewage 
connection, and trash collection, rather than vegetation itself. It may 
also be the case that the log-linear relationship assumed by negative 
binomial models is an oversimplification, as threshold effect (“tipping 
points”) may exist in the actual dengue-greenness relationship. To ac
count for the threshold effect, researchers have employed higher-order 
terms of independent variables (Spencer, 2013), semi-parametric 
models (Ding, Cao, Yu, & Ju, 2021), and machine learning models 
(Zhao, Yan, Yu, & Van Hentenryck, 2020). 

To our knowledge, no previous studies have examined whether the 
association between dengue incidence and greenness is modified by 
socioeconomic vulnerability. Our results (model 4, Table 3) show that 
while census tracts with lower socioeconomic vulnerability had a posi
tive association between dengue incidence and greenness, the associa
tion was negative in census tracts with higher socioeconomic 
vulnerability (Fig. 2). This pattern may indicate that other vegetation 
characteristics, such as vegetation species, type (natural versus culti
vated, tree versus grass), structure, and management practices differ 
between census tracts with different levels of socioeconomic vulnera
bility (Mitchell et al., 2016). For example, in Belo Horizonte, many 
vulnerable census tracts are close to the city border (Fig. 1d), which is 
abundant in natural vegetation not suitable for Aedes aegypti (Dorvillé, 
2010; Medeiros-Sousa et al., 2017). The same one-unit increase in the 
greenness of different vegetation could lead to variable changes in 
dengue incidence. This also may explain why prior studies have found 
mixed relationships between dengue incidence and vegetation, as 
vegetation can be systematically different between their study areas. 

4.2. Benefits of improved built environment and housing 

Our models also estimated the associations between dengue inci
dence and additional covariates of socioeconomic vulnerability, urban 
and natural environment. The disease process is complex, and particular 
microenvironments can become “pathogenic landscape” (Marti et al., 
2020). While the socioeconomic vulnerability, urban, and natural 
environment covariates studied here are markers of a “pathogenic 
landscape” and may lead to interventions, any causality should be 
carefully interpreted from our results due to omitted variable bias and 
study design issues (Spencer et al., 2020). We focus our discussion here 
on socioeconomic vulnerability and urban environment covariates, as 
they could be improved by social policy and urban planning. 

The positive association between dengue incidence and socioeco
nomic vulnerability (HVI) found in this study (models 2–3, Table 3) is 
consistent with previous ones in this urban setting (Campos et al., 2019; 
de Mattos Almeida et al., 2007). We consider this positive association 
highly likely, as supported by the construct of HVI and vector biology. 
High HVI indicates inadequate water supply infrastructure, sewage 
connection, and garbage collection, creating favorable conditions for 
Aedes aegypti infestation (Gubler, 2011). 

Census tract covered by high fractions of building footprint (i.e., 
building density) and forest showed positive associations with dengue 
incidence. High building density may be associated with extensive 

drainage networks (Seidahmed et al., 2018), and forest provides shading 
(Barrera et al., 2006) – both are favorable conditions for Aedes aegypti. 
Population density and % farmland showed a negative association with 
dengue incidence. While increased population density means higher 
chances of transmission, it may also indicate a better supply of water 
infrastructures and possibilities of herd immunity. The association be
tween % farmland and dengue incidence is likely dependent on agri
culture practices and requires further investigation in our study area. 

4.3. Urban planning and policy implications 

Local governments should consider vegetation management strate
gies to improve vegetation quality, particularly in vulnerable areas with 
greater potential benefits. Preserving green space has been included in 
Belo Horizonte’s development agendas, such as the Organic Law of the 
Municipality, the municipal conferences on urban policies in 2014, and 
the city’s master plan in 2019 (Costa, Álvares, Maciel, Teixeira, Coim
bra, & de Simão, 2009; Cruz, 2020). When preserving green space, we 
suggest local governments restore typical, native forest understory and 
arboreal landscapes. When well-managed, these landscapes could 
largely decrease the presence of vectors for dengue and other infectious 
diseases (Pedrosa et al., 2020). Most problems with green space in 
Brazilian cities, as happens in Belo Horizonte, are related to poor man
agement, which leads to habitat degradation and trash accumulation 
(Cardoso, Vasconcellos Sobrinho, & de Vasconcellos, 2015; Lobo, 2020). 
These poorly managed areas are therefore more likely to become po
tential breeding sites for disease vectors. Managing vegetation not only 
reduces dengue risk but also brings co-benefits such as reducing crime, 
mitigating urban heat, simulating physical activities, and improving 
mental health (Cardoso et al., 2015; Casey et al., 2017; James, Banay, 
Hart, & Laden, 2015). Managing tree canopy to reduce shading, mainly 
when water bodies are present, may also be an option, although other 
benefits of trees should be considered. 

Green space management should come together with improvements 
in water supply and drainage infrastructures, and sanitation services to 
reduce the likelihood of having a “pathogenic landscape”. Furthermore, 
the city may consider adopting an optimized drainage network to avoid 
an extensive length of pipes, which further reduces Aedes aegypti habitat. 
One priority area for these interventions is informal settlements in Belo 
Horizonte. The city began to improve the living conditions of informal 
settlements in 1970, and its recent efforts have been led by the Vila Viva 
Project since 2005 (Friche, Dias, Reis, Dias, & Caiaffa, 2015). This 
project creates the opportunity for future studies to quantify how 
bundled interventions, including improvements in sanitation and 
housing conditions, and provision of green space, together change 
dengue risk. 

5. Conclusions 

We found an overall negative but statistically not significant asso
ciation between dengue and greenness across 3826 census tracts in Belo 
Horizonte, Brazil, after controlling for a comprehensive set of covariates. 
We also found that the dengue-greenness association was modified by 
socioeconomic vulnerability: the association was positive in the least 
vulnerable census tracts but negative in the most vulnerable areas. Since 
we controlled for vegetation quantity using land cover composition and 
percentage of census tract area covered by building footprints, high 
greenness here likely indicates higher vegetation quality in terms of 
better vegetation health, more vigorous photosynthetic activities, and 
less environmental degradation. 

Collectively, our results show the potential role of improved vege
tation quality, as manifested by higher greenness, in reducing dengue 
risk, particularly for vulnerable areas. When well-managed, vegetated 
areas are less likely to become breeding sites for dengue vectors and 
reduce the risk of local dengue transmission. While we showed the po
tential role of improving vegetation quality in reducing dengue risk, this 
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strategy should be incorporated with other multisectoral approaches, 
such as improvements of water supply and drainage infrastructures, to 
reduce the presence of “pathogenic landscape” and dengue risk. 
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Dorvillé, L. F. (2010). Mosquitoes as Bioindicators of Forest Degradation in Southeastern 
Brazil, a Statistical Evaluation of Published Data in the Literature. Studies on 
Neotropical Fauna and Environment, 31, 68–78. https://doi.org/10.1076/ 
snfe.31.2.68.13331. 

Ellis, B. R., & Wilcox, B. A. (2009). The ecological dimensions of vector-borne disease 
research and control. Cadernos De Saude Publica, 25(Suppl 1), S155–167. https://doi. 
org/10.1590/s0102-311x2009001300015. 

Friche, A. A.de. L., Dias, M. A.de. S., Reis, P. B.dos., Dias, C. S., Caiaffa, W. T., & BH-Viva 
Project. (2015). Urban upgrading and its impact on health: A “quasi-experimental” 
mixed-methods study protocol for the BH-Viva Project. Cadernos De Saude Publica, 31 
(suppl 1), 51–64. https://doi.org/10.1590/0102-311X00079715. 

Friche, A. A. de L., Dias, M. A. de S., Reis, P. B. dos, Dias, C. S., & Caiaffa, W. T. (2015). 
Intervenções de requalificação urbana e o impacto na saúde: Protocolo de estudo 
“quasi-experimental” com métodos mistos – Projeto BH-Viva. Cadernos de Saúde 
Pública, 31, 51–64. doi:10.1590/0102-311X00079715. 

Gorelick, N. (2013). Google Earth Engine. EGU General Assembly Conference Abstracts, 15, 
11997. http://adsabs.harvard.edu/abs/2013EGUGA.1511997G. 

Goto, D. Y. N., Larocca, L. M., Felix, J. V. C., Kobayashi, V. L., Chaves, M. M. N., 
Goto, D. Y. N., … Chaves, M. M. N. (2016). Avaliação da oportunidade de notificação 
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